Technical brief: Knockdown factor for the buckling of spherical shells containing large-amplitude geometric defects
نویسندگان
چکیده
We explore the effect of precisely defined geometric imperfections on the buckling load of spherical shells under external pressure loading, using finite element analysis that was previously validated through precision experiments. Our numerical simulations focus on the limit of large amplitude defects and reveal a lower bound that depends solely on the shell radius to thickness ratio and the angular width of the defect. It is shown that, in the large amplitude limit, the buckling load depends on an single geometric parameter, even for shells of moderate radius to thickness ratio. Moreover, numerical results on the knockdown factor are fitted to an empirical, albeit general, functional form that may be used as robust design guideline for the critical buckling conditions of pressurized spherical shells.
منابع مشابه
The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells
We study the effect of a dimple-like geometric imperfection on the critical buckling load of spherical elastic shells under pressure loading. This investigation combines precision experiments, finite element modeling and numerical solutions of a reduced shell theory, all of which are found to be in excellent quantitative agreement. In the experiments, the geometry and magnitude of the defect ca...
متن کاملImperfections and Energy Barriers in Shell Buckling
The elastic buckling of shell structures such as spherical shells subject to external pressure and cylindrical shells loaded in axial compression is highly sensitive to imperfections and often catastrophic. Recent studies of spherical shells have provided accurate quantitative results for the relation between the buckling pressure and the amplitude and shape of geometric imperfections and, addi...
متن کاملKnockdown factors for buckling of cylindrical and spherical shells subject to reduced biaxial membrane stress
Cylindrical shells under uniaxial compression and spherical shells under equi-biaxial compression display the most extreme buckling sensitivity to imperfections. In engineering practice, the reduction of load carrying capacity due to imperfections is usually addressed by use of a knockdown factor to lower the critical buckling stress estimated or computed without accounting for imperfections. F...
متن کاملThermomechanical Buckling of Simply Supported Shallow FGM Spherical Shells with Temperature dependent Material
The thermomechanical buckling of simply supported thin shallow spherical shells made of functionally graded material is presented in this paper. A metal-ceramic functionally graded shell with a power law distribution for volume fraction is considered, where its properties vary gradually through the shell thickness direction from pure metal on the inner surface to pure ceramic on the outer surfa...
متن کاملField Study and Evaluation of Buckling Behavior of Cylindrical Steel Tanks with Geometric Imperfections under Uniform External Pressure
Construction and assembling process of shell structures has caused main problems. In these structures, there is no possibility for the integrated construction due to their large shell extent and they are built using a number of welded curved panel parts; hence, some geometrical imperfections emerge. Most of these imperfections are caused by the process of welding, transportation, inappropriate ...
متن کامل